Skip to main content

Sir Chandrasekhara Venkata Raman, FRS


Sir Chandrasekhara Venkata Raman, FRS
Sir Chandrasekhara Venkata Raman, FRS
Sir Chandrasekhara Venkata Raman, FRS (7 November 1888 – 21 November 1970) was an Indian physicist whose work was influential in the growth of science. He was the recipient of the Nobel Prize for Physics in 1930 for the discovery that when light traverses a transparent material, some of the deflected light changes in wavelength. This phenomenon is now called Raman scattering and is the result of the Raman effect.


The Raman papers archive curated by Raman Research Institute, Bangalore, India. C.V. Raman and his work

Read more at ACS
the-raman-effect-commemorative-booklet
Raman Effect as the Chemist’s Tool

This article from wikipedia: Read more at wikipedia

Comments

Popular posts from this blog

The scientific method is a systematic and logical approach to understanding the natural world through empirical observation, experimentation, and the formulation and testing of hypotheses and theories. The scientific method is a step-by-step approach in studying natural phenomena and establishing laws which govern these phenomena. Any scientific method involves the following general features. (i) Systematic observation (ii) Controlled experimentation (iii) Qualitative and quantitative reasoning (iv) Mathematical modeling (v) Prediction and verification or falsification of theories (i) Systematic observation: Scientific inquiry begins with careful and methodical observation of natural phenomena. This involves gathering data through various means, such as direct observation, measurement, or using specialized instruments, to collect qualitative and quantitative information about the phenomenon under study. (ii) Controlled experimentation: After making observations, scientists design and c...

Exploring the Wonders of Chemistry in Space

Introduction: Chemistry is the fundamental science that bridges the gap between the basic building blocks of matter and the vast complexities of the universe. When we look beyond our planet and into the intriguing realm of space, we discover a whole new dimension where chemistry plays a crucial role in shaping and understanding the cosmos. From the composition of stars and planets to the formation of complex molecules in interstellar space, the study of chemistry in space unveils a myriad of fascinating phenomena that continue to capture the curiosity of scientists and space enthusiasts alike. Chemistry of the Cosmos: One of the most captivating aspects of chemistry in space is the composition of celestial bodies. Stars, for example, are gigantic fusion reactors where hydrogen atoms fuse together to form helium, releasing tremendous amounts of energy in the process. This nuclear fusion process not only powers the star but also gives rise to heavier elements through nuclear reactions, u...