Blue Hydrogen Production and Carbon Capture Integration in Refineries

 Blue hydrogen, produced from natural gas with integrated carbon capture and storage (CCS), represents a critical transition pathway toward net-zero hydrogen production. Unlike green hydrogen which requires renewable electricity, blue hydrogen leverages existing natural gas infrastructure while significantly reducing lifecycle greenhouse gas emissions through permanent CO2 sequestration.

Blue Hydrogen Production Pathways

The primary blue hydrogen production route is steam methane reforming (SMR) with CCS. In this process, natural gas reacts with steam under heat to produce hydrogen and CO2. Capturing 90%+ of the resulting CO2 stream reduces lifecycle emissions to approximately 60-90% lower than conventional grey hydrogen production. Capital costs for blue hydrogen facilities currently range from $1,500-2,500 per tonne of annual capacity, with CO2 capture adding 20-30% to plant costs.

Refinery Integration and Industrial Demand

Refineries require substantial hydrogen volumes for hydrotreating and hydrocracking operations. Current hydrogen demand in refining exceeds 40 million tonnes annually globally. Converting refinery hydrogen production from grey to blue pathways offers immediate emissions reductions without major process modifications. Post-combustion capture technology already deployed in some facilities achieves 85-95% CO2 removal efficiency.

CO2 Utilisation and Storage Economics

Captured CO2 from blue hydrogen can be utilised in enhanced oil recovery (EOR), chemical synthesis, or permanently sequestered in depleted oil/gas fields or saline aquifers. Long-term storage costs range from $10-30 per tonne, making economics viable when combined with carbon pricing frameworks or government incentives.

Policy and Market Development

Governments including Germany, Japan, and the United Kingdom have announced blue hydrogen support programs through hydrogen strategies and production incentives. The International Energy Agency identifies blue hydrogen as essential for meeting 2050 net-zero targets, requiring rapid deployment scaling alongside green hydrogen development.

Future Perspectives

Blue hydrogen serves as a pragmatic bridge technology, leveraging existing fossil fuel infrastructure while capturing emissions. Competitive dynamics between blue and green hydrogen will evolve as renewable electricity costs decline and green hydrogen scale increases. Hybrid strategies combining blue and green pathways are likely optimal for industrial decarbonisation.


References


IEA (International Energy Agency). (2021). The Future of Hydrogen: Seizing today's opportunities. Paris: IEA Publications. https://doi.org/10.1787/1e0514c4-en


McFarland, E. (2012). Unconventional chemistry for unconventional natural gas. Current Opinion in Chemical Engineering, 1(1), 78-84. https://doi.org/10.1016/j.coche.2011.12.003


Zhao, X., Ma, Q., & Liu, Z. (2019). Carbon capture and utilisation in building chemicals. Renewable and Sustainable Energy Reviews, 113, 109287. https://doi.org/10.1016/j.rser.2019.109287


Keywords: Blue hydrogen, CCUS, natural gas, SMR, carbon capture, refineries, decarbonisation, hydrogen economy